388. The Dissociation Constants of Organic Acids. Part XIII. The Primary and Secondary Constants of Some Cyclic 1:1-Dicarboxylic Acids.

By William L. German, George H. Jeffery, and Arthur I. Vogel.
The present series of investigations was started by one of us early in 1926 with the objects, inter alia, (i) of determining the distances between the carboxyl groups of dibasic acids from measurements of the primary and secondary dissociation constants by application of Bjerrum's expression (Z.physikal. Chem., 1923, 106, 219), and thus of extending Spiers and Thorpe's work on the glutaric acids (J., 1925, 127, 538), and (ii) of providing accurate values of the " true" or thermodynamic dissociation constants. It was realised that potentiometric methods alone were suitable for the determination of both dissociation constants, but these were not employed at the time owing to lack of reproducibility in the results and to the different values obtained by calculating according to Auerbach and Smolczyk (Z. physikal. Chem., 1924, 110, 83) or to Britton (J., 1925, 127, 1896). No trustworthy conductivity data were then available for comparative purposes, and most of the previous papers of this series are concerned with filling this gap. The first values of the thermodynamic primary dissociation constants of normal dibasic acids are given in Part XI (this vol., p. 21), and these differ in some instances, e.g., for malonic and succinic acid, considerably from the potentiometric determinations of Britton (loc. cit.), Gane and Ingold (J., 1928, 1598; 1931, 2156), and Ashton and Partington (Trans. Faraday Soc., 1934, 30, 598), although agreement with our own measurements with the hydrogen and the quinhydrone electrode is within $2-3 \%$. This subject will be discussed elsewhere.

New conductivity data are now recorded for cyclo-propane-, -butane-, -pentane-, and -hexane-1: 1-dicarboxylic acids and their sodium salts, the latter corrected for hydrolysis and for the carbonic acid present in the water used; these replace the approximate figures given in Part II (J., 1929, 1487), which were vitiated by arithmetical errors (see this vol.,
p. 30). The true primary dissociation constants have been calculated in every case, although the value for the relatively strong cyclopropane acid, which was calculated on assumptions valid only for weak acids, must be regarded as approximate (compare iodic acid ; Davies, " The Conductivity of Solutions," 1933, p. 107).

Determinations have also been made of the primary and the secondary dissociation constants by potentiometric titration with the quinhydrone electrode. The thermodynamic dissociation constants of these acids have been calculated for the first time (contrast the empirical method of Gane and Ingold, J., 1931, 2154), and the values for the primary constants agree within $\mathrm{I}-2 \%$ with those deduced by conductivity, except that constant values for K_{1} could not be obtained for the cyclopropane acid.

The distances between the two carboxyl groups, r, have been calculated by Bjerrum's expression, $P_{2}-P_{1}-\log 4=3 \cdot 1 \times 10^{-8} / r$, where $P_{2}=-\log K_{2}$ and $P_{1}=-\log K_{1}$, and also by Gane and Ingold's method, which takes into account the change in properties of the solvent (see J., 1931, 2153, 2160, 2180). The results for r (in \AA.), as well as the values of the true dissociation constants (potentiometric), are given in the following table. The value for K_{1} (therm.) for cyclopropane-1 : I-dicarboxylic acid is that determined by conductivity.

	1:1-Dicarboxy	K_{1} (therm.)	$\times 10^{4}$	h_{2}^{\prime} (therm.) $\times 10^{6}$.	r (B.).	r (G. and I.).
(I)	cycloPropane.	$150 \cdot 0$		0.0371	$0 \cdot 62$	$2 \cdot 65$
(II)	cycloButane	$7 \cdot 47$		$1 \cdot 32$	$1 \cdot 44$	$3 \cdot 50$
(III)	cycloPentane.	$5 \cdot 89$		$0 \cdot 83$	$1 \cdot 38$	3•45
(IV)	cycloHexane	$3 \cdot 54$		$0 \cdot 78$	$1 \cdot 51$	$3 \cdot 54$

Points of interest are: (i) the small value of r for the acid (I); (ii) the different figures given by the two methods of calculation; (iii) the value for the cyclopentane acid is not greater than that for the corresponding cyclohexane acid, as would be expected on calculation of the extracyclic angles based upon the planar nature of both rings (compare Becker and Thorpe, J., 1920, 117, 1579), and this may be taken as evidence for the now accepted multiplanar character of the cyclohexane ring.

These results will be fully discussed when the experiments on the corresponding substituted glutaric acids have been completed.

Experimental.

Preparation of Materials.-Acids. The details have already been described (Vogel, J., 1934, 337; compare J., 1929, 1488). All operations were carried out in Pyrex vessels, and all solvents for recrystallisation were of AnalaR purity. The acids were all dried over calcium chloride in a vacuum desiccator for several days before use and had the following m. p.'s: (I) $136-137^{\circ}$, (II) 157°, (III) 187°, (IV) 178°.

Sodium salts. These were prepared by adding the calculated quantity of sodium hydroxide solution, prepared from the AnalaR solid and standardised against AnalaR potassium hydrogen phthalate, to known weights of the pure acids; the solutions were evaporated to dryness on the water-bath, and the solids recrystallised from dilute ethyl alcohol and dried at 130°. Their purity was confirmed by analysis [Found, for sodium salts of (I), (II), (III), and (IV) respectively : Na, 26•48, 24•43, 22•74, 21-26. Calc. : $26 \cdot 45,24 \cdot 46,22 \cdot 76,21 \cdot 30 \%$].

General Technique and Apparatus for Conductivity Measurements.-This was identical with that described in Part XI (loc.cit.). The same Hartley cells were employed, and their constants were found to be unchanged. Kohlrausch cells were used for the higher concentrations of acids (III) and (IV) owing to their smaller solubility, and are indicated by the letters following the conductivity figures. The symbols in the following tables have the same significance as before.

For the sodium salts, the application of a " normal " solvent correction yielded the following results for the preliminary calculation of the mobilities required for the application of the combined solvent and hydrolysis correction (Part XI, loc.cit.).

$$
\begin{aligned}
& \text { Na salt of (I) : } \mu_{0}{ }^{n}=\mu_{c}+790 \cdot 4 C^{0.654}=211 \cdot 9 ; l_{0_{\mathrm{X}^{\prime \prime}}}=56.2 \\
& \text {,, (II) : } \mu_{0}{ }^{n}=\mu_{c}+708 \cdot 8 C^{0.668}=200 \cdot 8 ; l_{0_{X^{\prime \prime}}}=50 \cdot 6 \\
& \text {,, (III) : } \mu_{0}{ }^{n}=\mu_{c}+794.5 C^{0.682}=199.0 ; l_{0_{\mathrm{X}},}=49.7 \\
& \text {,, (IV) : } \mu_{0}{ }^{n}=\mu_{c}+527 \cdot 1 C^{0.578}=197 \cdot 4 ; l_{0_{\mathrm{X}}}=48.9
\end{aligned}
$$

The mobilities of the acid ions, $l_{0_{\mathrm{HX}}}$, were computed from the relation, $l_{0_{\mathrm{HX}}}=0.53 l_{0_{\mathrm{O}^{\prime \prime}}}$ (Part XI, loc.cit.), and were respectively $30 \cdot 2,27 \cdot 0,26 \cdot 3$, and $25 \cdot 9$. The approximate secondary dissociation constants, determined from the potentiometric titration curve, employed in the computations were : acid (I) $5 \cdot 0 \times 10^{-8}$, (II) 1.5×10^{-6}, (III) 1.0×10^{-6}, (IV) 1.0×10^{-6}.

The corrected results for the sodium salts at 25° are in Table I.
Table I.
Sodium cyclopropane-1 : 1-dicarboxylate ($M=174 \cdot 03$).
$\mu_{0}{ }^{n}=\mu_{c}+385 \cdot 6 C^{0.463} ; \mu_{0}{ }^{n}=219 \cdot 12 ; l_{0 X^{\prime \prime}}=59 \cdot 8 ; l_{\mathrm{OHX}}=31 \cdot 9$.

Sodium cyclobutane-1:1-dicarboxylate ($M=188 \cdot 05$). $\mu_{0}{ }^{n}=\mu_{c}+338.4 C^{0.478} ; \mu_{0}{ }^{n}=206.87 ; l_{0 X}{ }^{.}=53.6 ; l_{0 \mathrm{HX}},=28.4$.

Run 1. Cell S. $\kappa=0 \cdot 672$.

$1 \cdot 001$	$199 \cdot 61$	$206 \cdot 42$	-	39.99	182.99	$183 \cdot 11$	$207 \cdot 24$
$4 \cdot 998$	$196 \cdot 59$	$198 \cdot 14$	$207 \cdot 10$	$58 \cdot 77$	$179 \cdot 37$	$179 \cdot 43$	(208.42)
10.07	$193 \cdot 33$	$194 \cdot 10$	$206 \cdot 60$	$73 \cdot 31$	$177 \cdot 32$	$177 \cdot 36$	-
18.99	$189 \cdot 41$	$189 \cdot 62$	$206 \cdot 55$	93.98	$175 \cdot 13$	$175 \cdot 16$	-
Run 2. Cell V. $\kappa=0.678$.							
$2 \cdot 992$	$197 \cdot 54$	$200 \cdot 65$	-	34.99	$184 \cdot 17$	184-29	206.95
$8 \cdot 611$	$194 \cdot 16$	$195 \cdot 39$	$207 \cdot 00$	$52 \cdot 61$	$180 \cdot 33$	$180 \cdot 39$	(207.93)
15.26	$191 \cdot 01$	191.44	$206 \cdot 69$	$72 \cdot 18$	$177 \cdot 55$	$177 \cdot 59$	-
$26 \cdot 08$	186.92	187.06	$206 \cdot 76$	$89 \cdot 31$	$175 \cdot 53$	$175 \cdot 56$	-

Sodium cyclopentane-1:1-dicarboxylate ($M=202 \cdot 06$). $\mu_{0}{ }^{n}=\mu_{c}+345 \cdot 9 C^{0.488} ; \mu_{0}{ }^{n}=204 \cdot 27 ; l_{\mathrm{OX}}{ }^{\prime \prime}=52 \cdot 4 ; l_{\mathrm{OHX}}=27 \cdot 7$.

Run 1. Cell V. $\kappa=0.582$.

$1 \cdot 612$	196.98	$200 \cdot 72$	-	$40 \cdot 06$	$181 \cdot 11$	$181 \cdot 10$	$204 \cdot 52$
$4 \cdot 506$	$194 \cdot 62$	196.02	$204 \cdot 07$	58.75	$177 \cdot 55$	$177 \cdot 53$	(205.77)
$10 \cdot 04$	$191 \cdot 51$	192.12	$204 \cdot 01$	$71 \cdot 82$	$175 \cdot 46$	$175 \cdot 42$	-
$22 \cdot 41$	186.32	$186 \cdot 65$	204.26	$98 \cdot 12$	$172 \cdot 22$	$172 \cdot 16$	-
Run 2. Cell S. $\kappa=0.575$.							
$3 \cdot 611$	195.58	197.08	-	44.99	$180 \cdot 18$	$180 \cdot 17$	(204.98)
$8 \cdot 607$	$192 \cdot 63$	$193 \cdot 17$	$204 \cdot 23$	$61 \cdot 97$	$176 \cdot 98$	$176 \cdot 96$	-
$15 \cdot 62$	189•17	189•48	$204 \cdot 28$	$76 \cdot 49$	$174 \cdot 88$	$174 \cdot 84$	一
$26 \cdot 6$	185	185	20	91	$173 \cdot 01$	$172 \cdot 95$	-

Sodium cyclohexane-1:1-dicarboxylate ($M=216 \cdot 08$). $\mu_{0}{ }^{n}=\mu_{c}+349.5 C^{0.492} ; \mu_{0}^{n}=199.91 ; l_{0 X^{\prime \prime}}=50.2 ; l_{0 \mathrm{HX}}{ }^{\prime}=26.6$.

$0 \cdot 604$	$194 \cdot 89$	$204 \cdot 80$	-	$37 \cdot 46$	$178 \cdot 00$	$177 \cdot 99$	$200 \cdot 35$
$5 \cdot 251$	$190 \cdot 38$	191.21	$199 \cdot 71$	62:38	$173 \cdot 82$	$173 \cdot 80$	(202.55)
9-502	187-81	188.34	$199 \cdot 74$	$79 \cdot 75$	$171 \cdot 67$	$171 \cdot 63$	-
24.99	181.43	$181 \cdot 72$	$200 \cdot 07$	97-42	$169 \cdot 84$	$169 \cdot 77$	-
Run 2. Cell $S . \quad \kappa=0.567$.							
$3 \cdot 612$	192.03	192.95	-	$39 \cdot 84$	$177 \cdot 56$	177.55	$200 \cdot 58$
$8 \cdot 499$	188.68	$189 \cdot 25$	$200 \cdot 03$	$57 \cdot 26$	$174 \cdot 49$	$174 \cdot 47$	(202.03)
15.51	$185 \cdot 01$	$185 \cdot 16$	$199 \cdot 66$	$73 \cdot 11$	$172 \cdot 53$	$172 \cdot 49$	-
$27 \cdot 12$	$180 \cdot 79$	181.08	200•18	$87 \cdot 68$	$170 \cdot 81$	$170 \cdot 74$	-

The values at round concentrations, obtained with a flexible spline, are given in Table II for convenience of reference and comparison with other published data.

Table II.

Molecular Conductivities of Sodium Salts of 1:1-Dicarboxylic Acids at 25°.

$C \times 10^{4}$.	cyclol'ropane.	cyclo Butane.	cyclo Pentane.	cycloHexane.	$C \times 10^{4}$.	cycloPropane.	cycloButane.	cycloPentane.	cycloHexane.
$5 \cdot 0$	207•66	$198 \cdot 25$	195-83	$191 \cdot 62$	$60 \cdot 0$	184.93	179.20	177.26	$174 \cdot 15$
$10 \cdot 0$	203•38	$194 \cdot 40$	$192 \cdot 25$	$188 \cdot 03$	$70 \cdot 0$	$182 \cdot 92$	177.78	$175 \cdot 75$	$172 \cdot 80$
$20 \cdot 0$	$197 \cdot 74$	$189 \cdot 22$	$187 \cdot 63$	$183 \cdot 19$	$80 \cdot 0$	$181 \cdot 10$	$176 \cdot 55$	$174 \cdot 40$	$171 \cdot 62$
$30 \cdot 0$	$192 \cdot 98$	$185 \cdot 74$	$184 \cdot 17$	$179 \cdot 84$	$90 \cdot 0$	$179 \cdot 49$	$175 \cdot 47$	$173 \cdot 18$	$170 \cdot 62$
$40 \cdot 0$	$189 \cdot 68$	$183 \cdot 05$	181.28	$177 \cdot 52$	$100 \cdot 0$	$178 \cdot 07$	$174 \cdot 52$	$172 \cdot 08$	$169 \cdot 78$
$50 \cdot 0$	187.07	180	$170 \cdot 07$	$175 \cdot 66$					

The True Primary Dissociation Constanis.-These were calculated exactly as described in Part XI (loc. cil., p. 26) ; three approximations were, however, necessary for the calculation of the ionic concentration $c^{\prime \prime \prime}$ owing to the strength of the acids (see J., 1932, 2837; this vol., p. 26). The data employed for the sodium hydrogen salts were :

Acid.	Propane.	Butane.	Pentane.	Hexane.
$\Lambda_{0} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$81 \cdot \mathbf{7}$	$\mathbf{7 8 \cdot 2}$	$\mathbf{7 7 \cdot 5}$	$\mathbf{7 6 \cdot 4}$
$\chi \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$\mathbf{7 8 \cdot 4 3}$	$\mathbf{7 7} \cdot 63$	$\mathbf{7 7} \cdot \mathbf{4 7}$	$\mathbf{7 7 \cdot 2 2}$

The values of K_{1} (therm.) were not calculated for some of the results in dilute solution, for experience showed that they are of little value in its final evaluation (see this vol., p. 26).

The collected results are in Table III; the symbols have their customary significance.
Table III.
Primary Dissociation Constants at 25°.

Table III (Contd.).
Primary Dissociation Constants at 25°.

cycloHexane-1:1-dicarboxylic Acid ($M=172 \cdot 10 ; \Lambda_{0}=374 \cdot 6$).
Run 1. Cell Q. $\kappa=0.745$.

0.985	$277 \cdot 12$	$4 \cdot 176$	-	-	-
$4 \cdot 721$	$219 \cdot 33$	$3 \cdot 905$	-	-	
$7 \cdot 032$	$170 \cdot 98$	3.879	-		
13.07	$152 \cdot 88$	$3 \cdot 674$	-	-	
$23 \cdot 44$	$122 \cdot 33$	$3 \cdot 721$	$372 \cdot 41$	7-6996	3.531
$35 \cdot 61$	$103 \cdot 39$	$3 \cdot 747$	$372 \cdot 00$	9•8971	3 544
$54 \cdot 33$	$86 \cdot 52$	3.769	$371 \cdot 46$	$12 \cdot 6545$	$3 \cdot 546$
$69 \cdot 24 \mathrm{~J}$	$78 \cdot 14$	$3 \cdot 807$	371.07	$14 \cdot 5806$	$3 \cdot 559$
$2 \cdot 908$	$252 \cdot 43$	Run 2. $4 \cdot 049$	Cell $R . \quad \kappa=0.738$. \qquad	一	-
$7 \cdot 174$	192.91	$3 \cdot 923$	-	-	-
$12 \cdot 50$	$158 \cdot 49$	$3 \cdot 879$	-	-	-
$19 \cdot 18$	$133 \cdot 55$	3.788	-	-	-
32.51	107.38	$3 \cdot 745$	$372 \cdot 07$	$7 \cdot 3824$	3.545
$47 \cdot 81$	$91 \cdot 33$	$3 \cdot 758$	$371 \cdot 62$	11.7499	$3 \cdot 544$
$73 \cdot 22 \mathrm{~J}$	76.03	$3 \cdot 785$	$370 \cdot 94$	15.0076	$3 \cdot 536$
95.73 V	67-53	3.795	370:32	$17 \cdot 4569$	$3 \cdot 540$

The values for μ at round concentrations for the acids are in Table IV.
Table IV.
Molecular Conductivities of 1:1-Dicarboxylic Acids.

$C \times 10^{4}$.	Propane.	Butane.	Pentane.	Hexane.	$C \times 10^{4}$.	Propane.	Butane.	Pentane.	Hexane.
$1 \cdot 0$	$366 \cdot 71$	$340 \cdot 12$	$310 \cdot 42$	$277 \cdot 00$	$50 \cdot 0$	$302 \cdot 40$	$123 \cdot 50$	$111 \cdot 50$	$89 \cdot 30$
$5 \cdot 0$	$358 \cdot 75$	$270 \cdot 14$	$241 \cdot 00$	214.85	$60 \cdot 0$	$294 \cdot 30$	$114 \cdot 50$	$103 \cdot 30$	$83 \cdot 70$
$10 \cdot 0$	$349 \cdot 80$	$217 \cdot 80$	$201 \cdot 30$	$168 \cdot 80$	$70 \cdot 0$	$286 \cdot 80$	$107 \cdot 20$	$96 \cdot 70$	$78 \cdot 50$
$20 \cdot 0$	$334 \cdot 70$	$174 \cdot 80$	$161 \cdot 50$	$131 \cdot 00$	$80 \cdot 0$	$280 \cdot 00$	$101 \cdot 60$	$91 \cdot 70$	$74 \cdot 00$
$30 \cdot 0$	$321 \cdot 80$	$151 \cdot 60$	$138 \cdot 00$	$110 \cdot 50$	$90 \cdot 0$	$273 \cdot 70$	$97 \cdot 50$	$87 \cdot 40$	$70 \cdot 70$
$40 \cdot 0$	$311 \cdot 30$	$135 \cdot 30$	$122 \cdot 20$	$97 \cdot 80$	$100 \cdot 0$	$267 \cdot 50$	$94 \cdot 00$	$83 \cdot 50$	$65 \cdot 50$

General Technique and Apparatus for the Potentiometric Titrations.-Full details of these have already been described (German and Vogel, Part XII, this vol., p. 912). The measurements were carried out in an oil thermostat maintained electrically at $25^{\circ} \pm 0.01^{\circ}$. Stirring was effected in most cases with purified nitrogen. All titrations were accurate to 0.01 c.c

The quinhydrone electrode was used throughout. The cell employed was $\mathrm{Hg} \mid \mathrm{Hg}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}$ (satd.) || Solution, quinhydrone | Pt , and the liquid-junction potential was assumed to be negligible. Before and after each titration, the saturated calomel electrode was standardised against at least two independent $N / 10$-calomel cells, for which a value of 0.3376 volt was assumed. The cell system was further standardised against Walpole's standard acetate buffer.

Calculation of the Thermodynamic Primary and Secondary Dissociation Constants.-The values of K_{1} (class.) and K_{2} (class.) were computed by Britton's modification (loc. cit.) of Auerbach and Smolczyk's formulæ (loc. cit.). The true dissociation constants were then evaluated by correction for ionic strength, the simple Debye-Hückel equation for activities being used. It can be readily shown that, in dilute solution where the ionic strength μ is small,
and

$$
\begin{aligned}
p_{K_{1}(\text { therm.) }} & =p_{K_{1}(\text { class.) }}+0.505 \mu^{0.5} \\
p_{K_{2}} \text { (therm.) } & =p_{K_{2} \text { (class.) }}+1.515 \mu^{0.5}
\end{aligned}
$$

The values of μ, the total ionic strength, were obtained as follows from the mean K_{1} (class.) and K_{2} (class.) values. The ions present in solution at any point of the titration are $\mathrm{Na}^{\circ}, \mathrm{H}^{*}$, HA^{\prime}, and $\mathrm{A}^{\prime \prime}$, and it is necessary to find the relative amounts of HA^{\prime} and $\mathrm{A}^{\prime \prime}$ present at any point (compare Michaelis-Perlzweig, " Hydrogen Ion Concentration," 1926, p. 55; Glasstone, " The Electrochemistry of Solutions," 1930, p. 203).

The total acid concentration $C=\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{\prime}\right]+\left[\mathrm{A}^{\prime \prime}\right]$. Let the fractions of HA^{\prime} and $\mathrm{A}^{\prime \prime}$ ions present be α_{1} and α_{2} respectively.

Then

$$
\alpha_{1}=\frac{\left[\mathrm{HA}^{\prime}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{\prime}\right]+\left[\mathrm{A}^{\prime}\right]}=\frac{\mathbf{1}}{\left[\mathrm{H}^{\circ}\right] / K_{1}+\mathbf{1}+K_{2} /\left[\mathrm{H}^{-}\right]}
$$

and

$$
\alpha_{2}=\frac{1}{\left[\mathrm{H}^{*}\right] / K_{2}+1+\left[\mathrm{H}^{*}\right]^{2} / K_{1} K_{2}}
$$

(Glasstone's expression, op. cit., requires correction.) If C is expressed in mols./l., then $\alpha_{1} C=$ [$\left.\mathrm{HA}^{\prime}\right]$ and $\alpha_{2} C=\left[\mathrm{A}^{\prime \prime}\right]$ approximately.

Now $\mu=0.5 \Sigma c z^{2}$ (where c and z are respectively the concentration and valency of the ions)

$$
\begin{aligned}
& =0.5\left(\left[\mathrm{Na}^{\circ}\right]+\left[\mathrm{H}^{*}\right]+\left[\mathrm{HA}^{\prime}\right]+\left[\mathrm{A}^{\prime \prime}\right] \times 2^{2}\right) \\
& =0.5\left(a+h+\alpha_{1} C+4 \alpha_{2} C\right) \\
& =0.5\left(a+h+C\left\{\frac{1}{\left(h / K_{1}+1+K_{2} / h\right)}+\frac{4}{\left(h / K_{2}^{\prime}+1+\overline{h^{2} / K_{1}} \bar{K}_{2}^{\prime}\right)^{\prime}}\right)\right.
\end{aligned}
$$

where a is the concentration of sodium hydroxide added and $h=\left[\mathrm{H}^{*}\right]$.
The essential titration results are in Table V.
Table V.
Potentiometric Titration of Cyclic 1: 1-Dicarboxylic Acids with Sodium Hydroxide at 25°.

	Acid.	Concn. of acid, M.	Concn. of NaOH
(I)	cycloPropane $\ldots \ldots \ldots .$.	0.005	0.01085
(III)	cycloButane	$\ldots \ldots \ldots$.	0.010
(III)	cycloPentane	$0.0 . \ldots .$.	0.005
(IV)	cycloHexane	\ldots.	0.005
		0.00965	
		0.00942	

Table VI contains typical results of the calculation of the classical and the thermodynamic dissociation constant for one acid (LII) in detail; only the final figures for the other three acids are given.

Table VI.
Dissociation Constants of Cyclic 1: 1-Dicarboxylic Acids at 25° by Potentiometric Titration.

Pairs of points	$\begin{gathered} K_{1} \\ \text { (class.) } \end{gathered}$	$\begin{gathered} K_{2} \\ \text { (class.) } \end{gathered}$		$\begin{gathered} K_{1} \\ \text { (therm.) } \end{gathered}$	$\begin{gathered} K_{2} \\ \text { (therm.) } \end{gathered}$	Pairs of points	$\begin{gathered} K_{1} \\ \text { (class.) } \end{gathered}$	$\begin{gathered} K_{2} \\ \text { (class.) } \end{gathered}$		K_{1} (therm.)	K_{2} (therm.)
used.	$\times 10^{4}$.	$\times 10^{6}$.	μ.	$\times 10^{4}$.	$\times 10^{7}$.		$\times 10^{4}$	$\times 10^{6}$	μ.	$\times 10^{4}$.	$\times 10^{7}$.
$22 \cdot 5$	$6 \cdot 25$		$2 \cdot 25$	$5 \cdot 92$		$35 \cdot 0\}$	$6 \cdot 27$		$2 \cdot 75$	5.90	
72.5 $\}$		$1 \cdot 05$	$5 \cdot 15$		$8 \cdot 16$	$70 \cdot 0$)		1.07	$4 \cdot 95$		$8 \cdot 35$
$\left.\begin{array}{l}25 \cdot 0 \\ 77 \cdot 5\end{array}\right\}$	$6 \cdot 23$	$1 \cdot 09$	$2 \cdot 32$ $5 \cdot 51$	$5 \cdot 86$	$8 \cdot 41$	$\left.\begin{array}{l} 37 \cdot 5 \\ 67 \cdot 5 \end{array}\right\}$	$6 \cdot 24$	$1 \cdot 05$	$\begin{aligned} & 2 \cdot 80 \\ & 4 \cdot 77 \end{aligned}$	5•87	$8 \cdot 24$
$27 \cdot 5$ \}	$6 \cdot 21$		$2 \cdot 43$	$5 \cdot 87$		$40 \cdot 0$)	$6 \cdot 24$		$2 \cdot 87$	$5 \cdot 87$	
80.0)		$1 \cdot 08$	$5 \cdot 74$		$8 \cdot 28$	65.0)		$1 \cdot 05$	$4 \cdot 54$		$8 \cdot 31$
$30 \cdot 0\}$	$6 \cdot 24$		$2 \cdot 54$	$5 \cdot 89$		$42 \cdot 5$	$6 \cdot 27$		$2 \cdot 97$	$5 \cdot 89$	
82.5		$1 \cdot 08$	$5 \cdot 96$		$8 \cdot 25$	$62 \cdot 5\}$		$1 \cdot 04$	$4 \cdot 35$		$8 \cdot 25$
									Mean	5.88	$8 \cdot 28$
						K_{1} (therm.).				K_{2} (therm.).3.71×10^{-8}	
cycloPropane-1: 1-dicarboxylic acid						No constant value obtainable					
cycloBut	ane-1:	-dicarbo	ylic a	id			$7 \cdot 47$	$\times 10^{-4}$		$1.32 \times$	10^{-6}
cycloHexane-1 : 1-dicarboxylic acid $3.54 \times 10^{-4} \quad \mathbf{7 . 7 8} \times 10^{-7}$											

The authors' thanks are due to the Royal Society and Imperial Chemical Industries for grants.
Woolwich Polytechnic, London, S.E. 18.
University College, Southampton.

